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Abstract. For A a central simple algebra of degree 2n, the nth exterior power algebra
λnA is endowed with an involution which provides an interesting invariant of A. In

the case where A is isomorphic to Q ⊗ B for some quaternion algebra Q, we describe
this involution quite explicitly in terms of the norm form for Q and the corresponding
involution for B.

Associated to every central simple F -algebra A and any nonnegative integer k ≤ deg A
is the kth exterior power λkA of A, which is a central simple F -algebra, of degree

(

deg A
k

)

,

Brauer-equivalent to A⊗k, see [4, 10.A]. It is defined so that when A is the split algebra
A = EndF (W ), this λk EndF (W ) is naturally isomorphic to EndF (∧kW ). When A has
even degree 2n, the nth exterior power λnA is endowed with a canonical involution γ such
that when A is split, γ is adjoint to the bilinear form θ defined on ∧nW by the equation
θ(x1 ∧ . . . ∧ xn, y1 ∧ . . . ∧ yn)e = x1 ∧ . . . ∧ xn ∧ y1 ∧ . . . ∧ yn, where e is any basis of the
1-dimensional vector space ∧2nW .

Besides providing an invariant of A, the involution γ is of additional interest because of
the even Clifford algebra. Indeed, any central simple algebra A with hyperbolic orthogo-
nal involution can be written as (M2(B), σ), for some central simple algebra B of degree n
uniquely determined up to isomorphism. The Clifford algebra C

(

M2(B), σ
)

is itself an alge-
bra with involution, and has been completely described when n is odd: in this case, M2(B)
is the endomorphism algebra of an F -vector space V , and the Clifford algebra C

(

M2(B), σ
)

is the even Clifford algebra of any quadratic form on V with adjoint involution σ. How-
ever, in the case when n is even, C(M2(B), σ) has a nontrivial piece, which is isomorphic to
(λnM2(B), γ). Please see [2] for a precise statement and [7] for a rational proof.

If A has degree 2n for n even, then γ is of orthogonal type, and if moreover A⊗n is split,
then λnA is split as well and hence γ is adjoint to some quadratic form qA. This provides
a canonical way to associate to A a quadratic form qA of dimension

(

2n
n

)

, which is uniquely
determined up to a scalar factor. If A is a biquaternion algebra, then qA is an Albert form
for A [2, 6.2]. Until now, the value of qA has not been known for any algebra A of index
≥ 8.

The main purpose of this paper is to provide a description of this involution γ in the
particular case when A admits a decomposition A = Q ⊗ B, where Q is a quaternion
algebra over F (see below for precise statements). In particular, if A is a tensor product of
quaternion algebras, we get a formula that gives qA (up to Witt-equivalence) in terms of the
norm forms of the quaternion algebras. In the course of obtaining this description, we also
prove a formula relating the trace forms of the various exterior powers λ kB.
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The first author would like to thank ETH Zürich for its hospitality while some of the research for this

paper was conducted. The second and third authors are partially supported by the European Commission
under the TMR contract ERB-FMRX-CT97-0107. The third author is partially supported by the National
Fund for Scientific Research (Belgium).

1
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1. Statement of the main results

We will always assume that our base field F has characteristic 6= 2 and that A is a central
simple F -algebra of degree 2n. We assume moreover that A is isomorphic to a tensor product
A = Q⊗ B, where Q is a quaternion algebra over F , and B is a central simple F -algebra,
necessarily of degree n. Note that this is always the case when n is odd. We write γQ for
the canonical symplectic involution on Q and nQ for the norm form.

If n is odd, the main result is the following, proven in Section 4:

Theorem 1.1. If n is odd, the algebra with involution (λn(Q⊗B), γ) is Witt-equivalent to
(Q, γQ)⊗n.

Witt-equivalence for central simple algebras is the natural generalization of Witt-equi-
valence for quadratic forms, see [1] for a definition.

Assume now that n is even, n = 2m. Then λnA is split and the involution γ is orthogonal.
We fix some quadratic form qA to which γ is adjoint. It is only defined up to similarity.

The algebra λmB is endowed with a canonical involution which we denote by γm. For
k = 0, . . . , n, we let tk : λkB → F be the reduced trace quadratic form defined by

tk(x) = TrdλkB(x2).(1.2)

Moreover, we let t+m and t−m denote the restrictions of tm to the subspaces Sym(λmB, γm) and
Skew(λmB, γm) of elements of λmB which are respectively symmetric and skew-symmetric
under γm, so that tm = t+m ⊕ t−m. The forms thus defined are related by the following
equation, proven in 5.3:

Theorem 1.3. In the Witt ring of F , the following equality holds:

〈2〉 ·
m−1
∑

k=0

(−1)ktk =

{

−t−m if m is even,

t+m if m is odd.

The similarity class of qA is determined by the following theorem, proven in 5.5:

Theorem 1.4. If n is even, n = 2m, the similarity class of qA contains the quadratic form:

t+m − t−m + nQ ·
(

t−m +
∑

0≤k<m
k even

〈2〉tk

)

if m is even,

t−m − t+m + nQ ·
(

∑

0≤k<m
k even

〈2〉tk

)

if m is odd.

The Witt class of this quadratic form can be described more precisely under some ad-
ditional assumptions (see Proposition 6.1 for precise statements). We just mention here a
particular case in which the formula reduces to be quite nice.

Assume that m is even and B is of exponent at most 2. Then λmB is split, and its
canonical involution is adjoint to a quadratic form qB . Even though this form is only
defined up to a scalar factor, its square is actually defined up to isometry. We then have
the following, proven in 5.6:

Corollary 1.5. If m is even (i.e., deg B ≡ 0 mod 4) and B is of exponent at most 2, then
the similarity class of qA contains a form whose Witt class is q2

B+nQ

(

2n−2 − 1
2

(

n
m

)

− ∧2qB

)

.

Some of the notation needs an explanation. For a quadratic form q on a vector space
W with associated symmetric bilinear form b so that q(w) = b(w, w), we have an induced
quadratic form on ∧2W which we denote by ∧2q. For x1, x2, y1, y2 ∈ W , its associated
symmetric bilinear form ∧2b is defined by

(∧2b)(x1 ∧ x2, y1 ∧ y2) = b(x1, y1)b(x2, y2)− b(x1, y2)b(x2, y1).

Thus if q = 〈α1, . . . , αn〉, we have

∧2q ' ⊕1≤i<j≤n〈αiαj〉.
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In particular, even if q is just defined up to similarity, ∧2q is well-defined up to isometry.
From Corollary 1.5, we also get the following, which is proven in 6.3:

Corollary 1.6. Let Ar = Q1 ⊗ · · · ⊗ Qr be a tensor product of r quaternion F -algebras,
where r ≥ 3, and let TAr

be the reduced trace quadratic form on Ar. The similarity class of
qAr

contains a quadratic form whose Witt class is

2n−1 −
2n−2

n
〈2r〉 · TAr

= 2f(r)
(

2r − (2− nQ1) · · · (2− nQr
)
)

,

where n = 2r−1 = 1
2 deg A and f(r) = 2r−1 − r − 1.

In particular, for r = 3, we get the quadratic form

4(nQ1 + nQ2 + nQ3)− 2(nQ1nQ2 + nQ1nQ3 + nQ2nQ3) + nQ1nQ2nQ3 .

Adrian Wadsworth had casually conjectured a description of qA3 in [2, 6.8], and we now see
that his conjecture was not quite correct in that it omitted the nQ1nQ2nQ3 term.

As a consequence of Corollary 1.6, we can show that the form qA lies in the nth power of
the fundamental ideal of the Witt ring WF for many central simple algebras A of degree 2n;
the following result is proven in 6.4:

Corollary 1.7. Suppose that A is a central simple algebra of degree 2n ≡ 0 mod 4 which
is isomorphic to matrices over a tensor product of quaternion algebras. Then the form qA
lies in InF .

The first author conjectured [2, 6.6] that qA lies in InF for all central simple F -algebras
A of degree 2n ≡ 0 mod 4 and such that A⊗2 is split. Corollary 1.7 fails to prove the full
conjecture because for every integer r ≥ 3 there exists a division algebra A of degree 2 r and
exponent 2 such that A doesn’t decompose as A′ ⊗ A′′ for any nontrivial division algebras
A′ and A′′ [3, 3.3], so such an A doesn’t satisfy the hypotheses of Corollary 1.7.

If A is a tensor product of two quaternion algebras, the form qA is an Albert form of
A, and the Witt index of qA determines the Schur index of A, as Albert has shown (see
for instance [4, (16.5)]). Corollary 1.6 shows that one cannot expect nice results relating
the Witt index of qAr

and the Schur index of Ar for r ≥ 3. As pointed out to us by Jan
van Geel, the difficulty is that Merkurjev has constructed in [6, §3] algebras of the form Ar

for r ≥ 3 (i.e., tensor products of at least 3 quaternion algebras) which are skew fields but
whose center, F , has I3F = 0. By Corollary 1.7, the forms qAr

are then hyperbolic.

2. Description of λnM2(B)

In order to prove these results, we have to describe the algebra with involution (λn(Q⊗
B), γ), which we will do by Galois descent. Hence we first give a description of λnM2(B),
see Theorem 2.4 below.

Assume B = EndF (V ) for some n-dimensional vector space V . For 0 ≤ k ≤ n, we have
λkB = EndF (∧kV ). We identify M2(B) ' EndF (V ⊕V ) by mapping

(

a b
c d

)

∈ M2(B) to the
endomorphism

(x, y) 7→
(

a(x) + b(y), c(x) + d(y)
)

.

The distinguished choice of embedding of B in M2(B) corresponds with the obvious choice
of direct sum decomposition of V ⊕V . (There are many others.) This gives an identification
λnM2(B) = EndF (∧n(V ⊕ V )). For all integers k, `, this decomposition determines ∧kV ⊗
∧`V as a vector subspace of ∧k+`(V ⊕ V ) by mapping (x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ y`) to

(x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, y1) ∧ · · · ∧ (0, y`) ∈ ∧k+`(V ⊕ V ).

In particular, we have

∧n(V ⊕ V ) = ⊕n
k=0

(

∧kV ⊗ ∧n−kV
)

.(2.1)
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For each k, the space ∧kV ⊗ ∧n−kV can be identified to EndF (∧kV ) as follows. Fix a
nonzero element (hence a basis) e of ∧nV and define a bilinear form

θk : ∧k V × ∧n−kV → F

by the equation

θk(xk, xn−k) e = xk ∧ xn−k for x` ∈ ∧`V .

This form is nonsingular, so it provides the identification mentioned above

∧kV ⊗ ∧n−kV = EndF (∧kV )(2.2)

by sending xk ⊗ xn−k to the map y 7→ xkθn−k(xn−k, y). The product in EndF (∧kV ) then
corresponds in ∧kV ⊗ ∧n−kV to

(xk ⊗ xn−k)(yk ⊗ yn−k) = θn−k(xn−k, yk) xk ⊗ yn−k.

From (2.1) and (2.2), we deduce an identification of the corresponding endomorphism rings

λnM2(B) = EndF (⊕n
k=0λ

kB).

This remains true in the case when B is non split, as we will prove by Galois descent. First,
we must introduce some maps on ⊕n

k=0λ
kB.

Since the bilinear form θk is nonsingular, for any f ∈ EndF (∧kV ), we have a unique
element γk(f) ∈ EndF (∧n−kV ) such that

θk (f(x), y) = θk (x, γk(f)(y)) ,

for every x ∈ ∧kV and y ∈ ∧n−kV . This defines a canonical anti-isomorphism (not depend-
ing on the choice of e)

γk : EndF (∧kV ) → EndF (∧n−kV )

such that

γk(x⊗ y) = (−1)k(n−k)y ⊗ x(2.3)

for x and y as before. One may easily verify that γn−k◦γk = IdEndF (∧kV ) for all k = 0, . . . , n.
By Galois descent, the maps γk are defined even when B is nonsplit, i.e., we have anti-
isomorphisms γk : λkB → λn−kB such that γk ◦ γn−k = IdλkB (see [4, Exercise 12, p. 147]
for a rational definition). In the particular case where n is even, by definition of the bilinear
form θn/2, the map γn/2 is actually the canonical involution on λn/2B.

Theorem 2.4. There is a canonical isomorphism

Φ: λnM2(B) → EndF (λ0B ⊕ · · · ⊕ λnB).

The canonical involution γ on λnM2(B) induces via Φ an involution on EndF (⊕n
k=0λ

kB)
which is adjoint to the bilinear form T defined on λ0B ⊕ · · · ⊕ λnB by

T (u, v) =

{

(−1)` TrdλkB (uγ`(v)) if k + ` = n,

0 if k + ` 6= n,

for any u ∈ λkB and v ∈ λ`B.

Proof. We prove this by Galois descent. Fix a separable closure Fs of F and let Γ :=
Gal(Fs/F ) be the absolute Galois group. We fix a vector space V over F such that dimF V =

deg B = n and let Vs = V ⊗F Fs. We fix also an Fs-algebra isomorphism ϕ : B ⊗F Fs
∼
−→

EndF (V )⊗F Fs. Every σ ∈ Γ acts canonically on Vs and EndFs
(Vs) = EndF (V )⊗F Fs; we

denote again by σ these canonical actions, so that σ(f) = σ ◦f ◦σ−1 for f ∈ EndFs
(Vs). On

the other hand, the canonical action of Γ on B ⊗F Fs corresponds under ϕ to some twisted
action ∗ on EndFs

(Vs). Since every Fs-linear automorphism of EndFs
(Vs) is inner, we may

find gσ ∈ GL(Vs) such that

σ ∗ f = gσ ◦ σ(f) ◦ g−1
σ = Int(gσ) ◦ σ(f) for all f ∈ EndFs

(Vs).
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Then ϕ induces an F -algebra isomorphism from B onto the F -subalgebra
{

f ∈ EndFs
(Vs) | gσ ◦ σ(f) ◦ g−1

σ = f for all σ ∈ Γ
}

.

The ∗-action of Γ on EndFs
(Vs) induces twisted actions on EndFs

(

∧n(Vs ⊕ Vs)
)

and on

EndFs

(

⊕n
k=0 EndFs

(∧kVs)
)

such that the F -algebras of Γ-invariant elements are λn
(

M2(B)
)

and EndF (⊕n
k=0λ

kB) respectively. To prove the first assertion of the theorem, we will show
that these actions correspond to each other under the isomorphism

EndFs

(

∧n(Vs ⊕ Vs)
) ∼
−→ EndFs

(

⊕n
k=0 EndFs

(∧kVs)
)

derived from (2.1) and (2.2).
For σ ∈ Γ and k = 0, . . . , n, define ∧kgσ ∈ GL(∧kVs) by

∧kgσ(x1 ∧ . . . ∧ xk) = gσ(x1) ∧ . . . ∧ gσ(xk).

Then ϕ induces an F -algebra isomorphism from λkB onto the F -subalgebra
{

f ∈ EndFs
(∧kVs) | ∧

kgσ ◦ σ(f) ◦ (∧kgσ)−1 = f for all σ ∈ Γ
}

,

hence also from EndF (⊕n
k=0λ

kB) to

{

f ∈ EndFs

(

⊕n
k=0 EndFs

(∧kVs)
)

|

(

⊕k Int(∧kgσ)
)

◦ σ(f) = f ◦
(

⊕k Int(∧kgσ)
)

for all σ ∈ Γ
}

.

Similarly, define ∧n(gσ ⊕ gσ) ∈ GL
(

∧n(Vs ⊕ Vs)
)

by

∧n(gσ ⊕ gσ)
(

(x1, y1) ∧ . . . ∧ (xn, yn)
)

=
(

gσ(x1), gσ(y1)
)

∧ . . . ∧
(

gσ(xn), gσ(yn)
)

,

so that λn
(

M2(B)
)

can be identified through ϕ to
{

f ∈ EndFs

(

∧n(Vs ⊕ Vs)
)

| ∧n(gσ ⊕ gσ) ◦ σ(f) = f ◦ ∧n(gσ ⊕ gσ) for all σ ∈ Γ
}

.

Certainly, ∧n(gσ ⊕ gσ) = ⊕n
k=0(∧

kgσ ⊗ ∧n−kgσ) under (2.1), and computation shows that
∧kgσ ⊗ ∧n−kgσ = (det gσ) Int(∧kgσ) under (2.2). Therefore, (2.1) and (2.2) induce an
isomorphism of F -algebras

Φ: λn
(

M2(B)
) ∼
−→ EndF (⊕n

k=0λ
kB).

To complete the proof of the theorem, we show that the canonical involution γ on
λn

(

M2(B)
)

corresponds to the adjoint involution with respect to T under Φ. In order to do

so, we view λn
(

M2(B)
)

and EndF (⊕n
k=0λ

kB) as the fixed subalgebras of EndFs

(

∧n(Vs⊕Vs)
)

and EndFs

(

⊕n
k=0 EndFs

(∧kVs)
)

, and show that the canonical involution γ on

EndFs

(

∧n(Vs ⊕ Vs)
)

corresponds to the adjoint involution with respect to T (extended
to Fs) under the isomorphism induced by (2.1) and (2.2).

Taking any nonzero element e ∈ ∧nVs, the identification ∧2n(Vs ⊕ Vs) = ∧nVs ⊗ ∧nVs

allows us to write e ⊗ e for a nonzero element of ∧2n(Vs ⊗ Vs). Then γ is adjoint to the
bilinear form

Θ: ∧n (Vs ⊕ Vs)× ∧n(Vs ⊕ Vs) → Fs

given by

Θ(x, y) e⊗ e = x ∧ y for x, y ∈ ∧n(Vs ⊕ Vs)

as was mentioned in the introduction. Using the identification of ∧kVs ⊗ ∧n−kVs as a
subspace of ∧n(Vs ⊕ Vs), we have that for xi, yi ∈ ∧

iVs,

(2.5) Θ(xk ⊗ xn−k, y` ⊗ yn−`) =

{

(−1)`θk(xk, y`)θn−k(xn−k, yn−`) if k + ` = n,
0 if k + ` 6= n.
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We translate this into terms involving B, using the isomorphism ϕ to identify λkBs :=
(λkB)⊗F Fs with EndFs

(∧kVs). In particular, we know that

TrdλkBs
(xk ⊗ xn−k) = θn−k(xn−k, xk)

for Trd the reduced trace, and that

θk(xk, xn−k) = (−1)k(n−k)θn−k(xn−k, xk).

So for x = xk ⊗ xn−k ∈ λkBs and y = y` ⊗ yn−` ∈ λ`Bs,

Θ(x, y) =

{

(−1)` TrdλkBs
(γ`(y)x) if k + ` = n,

0 if k + ` 6= n.
(2.6)

Of course, in the k + ` = n case we could just as easily have taken

Θ(x, y) = (−1)` Trdλ`Bs
(γk(x)y).

So, the vector space isomorphism derived from (2.1) and (2.2) is an isometry of Θ and T , and
it follows that the canonical involution γ adjoint to Θ corresponds to the adjoint involution
to T under Φ.

For later use, we prove a little bit more about this isomorphism Φ. Let us consider the
elements e1 = ( 1 0

0 0 ) and e2 = ( 0 0
0 1 ) ∈ M2(B), and let t be an indeterminate over F . We

write λn for the map M2(B) → λnM2(B) defined in [4, 14.3], which is a homogeneous
polynomial map of degree n. So there exist `0, . . . , `n ∈ λnM2(B) such that

λn(e1 + te2) = tn`0 + tn−1`1 + · · ·+ t`n−1 + `n.

We then have

Lemma 2.7. For k = 0, . . . , n, the image of `k under Φ is the projection on λkB. Moreover,
we have γ(`k) = `n−k.

Proof. It is enough to prove it in the split case. Hence, we may assume B = EndF (V ),
and use identification (2.2) of the previous section. An element of λkB = EndF (∧kV ) can
be written as (x1 ∧ · · · ∧ xk) ⊗ (y1 ∧ · · · ∧ yn−k), where x1, . . . , xk, y1, . . . , yn−k ∈ V . The
endomorphism λn(e1 + te2) acts on this element as follows:

λn(e1 + te2) ((x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k))
= (x1, 0) ∧ · · · ∧ (xk, 0) ∧ (0, ty1) ∧ · · · ∧ (0, tyn−k)
= tn−k(x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yn−k).

Hence, the image under `i of this element is itself if i = k and 0 otherwise. This proves the
first assertion of the lemma. By Theorem 2.4, to prove the second one, one has to check that
for any u, v ∈ λ0B ⊕ · · · ⊕ λnB, we have T (`i(u), v) = T (u, `n−i(v)), which follows easily
from the description of T given in that theorem.

Remark 2.8. By the previous lemma, the elements `0, . . . , `n ∈ λnM2(B) are orthogonal
idempotents. Hence, the fact that γ(`k) = `n−k for all k = 0, . . . , n implies that the
involution γ is hyperbolic if n is odd and Witt-equivalent to its restriction to `mλnM2(B)`m

if n = 2m.

We will also use the following:

Lemma 2.9. For any b ∈ F×, consider g0 := ( 0 b
1 0 ) ∈ M2(B), and set g := λn(g0). We

have:

(1) for any u ∈ λkB, Φ(g)(u) = bn−kγk(u) ∈ λn−kB;
(2) g2 = bn and γ(g) = (−1)ng;
(3) For any k = 0, . . . , n, g`k = `n−kg.
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Proof. Again, it is enough to prove it in the split case. A direct computation then shows
that for any x⊗ y ∈ ∧kV ⊗ ∧n−kV = λkB, we have

g(x⊗ y) = (−1)k(n−k)bn−k(y ⊗ x),

which combined with (2.3) gives (1), which in turn easily implies (3). The first part of (2)
is because λn restricts to be a group homomorphism on M2(B)∗ [4, 14.3], and the second
part then follows since γ(g)g = NrdM2(B)(g) = (−b)n by [4, 14.4].

3. Description of λn(Q⊗B)

We suppose that Q = (a, b)F is a quaternion F -algebra and B is an arbitrary central
simple F -algebra of degree n. We will describe λn(Q⊗B) by Galois descent from K = F (α),
where α ∈ Fs is a fixed square root of a. More precisely, let us identify Q with the F -
subalgebra of M2(K) generated by

(

α 0
0 −α

)

and g0 = ( 0 b
1 0 ), i.e.,

Q = {x ∈ M2(K) | g0x̄g−1
0 = x},

where ¯ denotes the non-trivial automorphism of K/F . We also have

Q⊗B = {x ∈ M2(BK) | g0x̄g−1
0 = x},

where BK = B ⊗F K, and g0 is now viewed as an element of M2(BK).
The canonical map λn : A → λnA restricts to be a group homomorphism on A∗ [4, 14.3].

Moreover, when deg A = 2n, for a ∈ A∗, Int(λn(a)) preserves the canonical involution γ on
λnA [4, 14.4], and so we get a map

λn : Aut(A) → Aut(λnA, γ).

In particular this holds for A = M2(BK). This induces a map on Galois cohomology

H1(K/F, Aut(M2(BK)))
H1(λn)
−−−−−→ H1(K/F, Aut(λnM2(BK), γ)).

The image under this map of the 1-cocycle ¯ 7→ Int(g0) is the 1-cocycle ¯ 7→ Int(λng0),
as in the preceding section. Since the former 1-cocycle corresponds to Q ⊗ B, the latter
corresponds to λn(Q⊗B), so

λn(Q⊗B) = {x ∈ λnM2(BK) | gx̄g−1 = x}(3.1)

for g := λn(g0). We fix this definition of g for the rest of the paper.

4. The n odd case

This section is essentially the proof of Theorem 1.1.
We set λevenB := ⊕0≤k<n

k even
λkB. For 0 ≤ k ≤ n, we let tk be the reduced trace quadratic

form on λkB as in (1.2). We then have the following:

Lemma 4.1. When n = deg B is odd, the algebra with involution (λn(Q ⊗ B), γ) is iso-
morphic to (Q, γQ)⊗ (C, σ), where (C, σ) is isomorphic to EndF (λevenB) endowed with the
adjoint involution with respect to

∑

0≤k<n
k even

tk.

Proof. If i, j ∈ Q satisfy i2 = a, j2 = b and ij = −ji, then since λn restricts to be a group
homomorphism on (Q⊗B)∗, λn(i⊗ 1) and λn(j⊗ 1) ∈ λn(Q⊗B) anticommute and satisfy

λn(i⊗ 1)2 = an, λn(j ⊗ 1)2 = bn,
γ(λn(i⊗ 1)) = −λn(i⊗ 1), γ(λn(j ⊗ 1)) = −λn(j ⊗ 1).

(For the bottom two equations, see [4, (14.4)].) Hence, these two elements generate a copy of
Q in λn(Q⊗B) on which γ restricts to be γQ and we have (λn(Q⊗B), γ) ' (Q, γQ)⊗(C, σ),
where C is the centralizer of Q in λn(Q⊗B) and σ denotes the restriction of γ to C [4, 1.5].
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To describe C, we take i = α(e1 − e2) and j = g0, as in the beginning of the previous
section, so that λn(j ⊗ 1) = g and

λn(i⊗ 1) = αn((−1)n`0 + (−1)n−1`1 + · · ·+ `n) = −αn(`even − `odd),

where `even =
∑

0≤k≤n
k even

`k and `odd =
∑

0≤k≤n
k odd

`k.

Let us consider the map Ψ: `evenλn(M2(B))`even → λn(M2(BK)) defined by Ψ(x) =

x + gxg−1. Believe it or not, Ψ is an F -algebra homomorphism. Clearly, Ψ(x) = Ψ(x) and
since g2 = bn is central (see Lemma 2.9), gΨ(x) = Ψ(x)g for all x. Hence, the image of Ψ
is contained in λn(Q⊗B) and is centralized by g. Moreover,

λn(i⊗ 1)Ψ(x) = −αn(x− gxg−1) = Ψ(x)λn(i⊗ 1).

Hence, the image of Ψ also centralizes λn(i⊗ 1), and by dimension count it is exactly C.
Since γ(Ψ(x)) = Ψ(g−1γ(x)g), the involution σ on C corresponds via Ψ to Int(g−1)◦γ on

`evenλn(M2(B))`even. Note that if x ∈ `evenλn(M2(B))`even, then γ(x) ∈ `oddλn(M2(B))`odd

and g−1γ(x)g ∈ `evenλn(M2(B))`even. By Theorem 2.4, we get that (C, σ) is isomorphic
to EndF (λevenB) endowed with the involution adjoint to the quadratic form T ′ defined by
T ′(u, v) = T (u, Φ(g)(v)). Using the description of T given in Theorem 2.4 and Lemma 2.9(1),
it is easy to check that the λkB are pairwise orthogonal for T ′ and that T ′ restricts to be
〈(−b)n−k〉tk on λkB. Thus T ′ is similar to

∑

0≤k<n
k even

tk.

Let us now prove Theorem 1.1. If n = 2m+1, then the algebra with involution (Q, γQ)⊗n

is isomorphic to (Q, γQ) ⊗ (EndF (Q), adnQ
)⊗m, where adnQ

denotes the adjoint involution
with respect to the quadratic form nQ. Indeed, one may easily check that (Q ⊗ Q, γQ ⊗
γQ) is isomorphic to

(

EndF (Q), adT(Q,γQ)

)

, where T(Q,γQ) is the quadratic form defined by

T(Q,γQ)(x) = TrdQ(xγQ(x)). Since for any x ∈ Q, we have xγQ(x) = nQ(x) ∈ F , T(Q,γQ) =

〈2〉nQ, and (Q⊗2, γ⊗2
Q ) ' (EndF (Q), adnQ

). Therefore, to prove Theorem 1.1, it suffices to

show that the algebras with involution (Q, γQ)⊗ (C, σ) and (Q, γQ)⊗ (EndF (Q), adnQ
)⊗m

are Witt-equivalent. We will use the following lemma:

Lemma 4.2. Let (U, q) and (U ′, q′) be two quadratic spaces over F . There exists an iso-
morphism

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U ′), adq′)

if and only if the quadratic forms nQ ⊗ q and nQ ⊗ q′ are similar.

Proof. Let us write h for the hermitian form h : UQ = U ⊗ Q → (Q, γQ) induced by q so
that we have

(EndQ(UQ), adh) = (EndF (U), adq)⊗ (Q, γQ).

Its trace form, which is by definition the quadratic form

U ⊗F Q → F, x 7→ h(x, x)

is q ⊗ nQ. Similarly, we denote by h′ the hermitian form induced by q′. By a theorem of
Jacobson [8, 10.1.7], the hermitian modules (UQ, h) and (U ′

Q, h′) are isomorphic if and only

if their trace forms are isometric. Hence, if the quadratic forms q ⊗ nQ and q′ ⊗ nQ are
similar, i.e., q ⊗ nQ ' 〈µ〉q′ ⊗ nQ for some µ ∈ F ∗, then the hermitian forms h and 〈µ〉h′

are isomorphic, which proves that

(Q, γQ)⊗ (EndF (U), adq) ' (Q, γQ)⊗ (EndF (U ′), adq′).

Conversely, if the two algebras with involution (Q, γQ) ⊗ (EndF (U), adq) and (Q, γQ) ⊗
(EndF (U ′), adq′) are isomorphic, then, (Q, γQ)⊗2⊗(EndF (U), adq) = (EndF (Q⊗U), adnQ⊗q)

and (Q, γQ)⊗2⊗ (EndF (U ′), adq′) are also isomorphic, which proves that nQ⊗ q and nQ⊗ q′

are similar.
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These two lemmas reduce the proof of Theorem 1.1 to showing that the quadratic forms

nQ ⊗
∑

0≤k<n
k even

tk and n
⊗(m+1)
Q are Witt-equivalent, up to a scalar factor.

On the one hand, we have n
⊗(m+1)
Q = 4mnQ, since n⊗2

Q = 4nQ. On the other hand, since

the algebra B is split by an odd-degree field extension, Springer’s Theorem [5, VII.2.3] shows
that tk is isometric to the trace form of

λk(Mn(F )) = M(n
k)

(F )

which is Witt-equivalent to
(

n
k

)

〈1〉. Hence the Witt class of nQ ⊗
∑

0≤k<n
k even

tk is

∑

0≤k<n
k even

(

n

k

)

nQ = 2n−1nQ = 4mnQ,

which completes the proof of Theorem 1.1.

5. The n even case

In this section, we prove Theorems 1.3, 1.4, and Corollary 1.5.
Assume from now on that n is even and write n = 2m. Consider the element of

λn(M2(BK))

h = α(1− b−mg)(`0 + · · ·+ `m−1 + 1
2`m) + (1 + b−mg)( 1

2 `m + `m+1 + · · ·+ `n).

One can check that

h−1 = 1
2

(

(α−1 + b−mg)(`0 + · · ·+ `m) + (1− b−mgα−1)(`m + · · ·+ `n)
)

and g = bm hh
−1

.
Therefore, it follows from (3.1) that

λn(Q⊗B) = hλnM2(B)h−1 ⊂ λnM2(B)K .

Using the isomorphism Φ of Theorem 2.4 as an identification, we then have

λn(Q⊗B) = EndF

(

h(λ0B)⊕ · · · ⊕ h(λnB)
)

,

and the canonical involution on λn(Q⊗B) is adjoint to the restriction of the bilinear form
TK to the F -subspace h(λ0B) ⊕ · · · ⊕ h(λnB). This restriction is given by the following
formula:

Lemma 5.1. The F -subspaces h(λkB) are pairwise orthogonal. Moreover, for u, v ∈ λkB
we have

TK (h(u), h(v)) =















−2a(−1)kbm−k TrdλkB(uv) if k < m,

(−1)m TrdλmB

(

(1+a)γm(u)+(1−a)u
2 v

)

if k = m,

2(−1)kbm−k TrdλkB(uv) if k > m.

Proof. Using Lemmas 2.7 and 2.9(1), one may easily check that for any u ∈ λkB, we have

h(u) =











α(u− bm−kγk(u)) if k < m,
(1+α)u+(1−α)γk(u)

2 if k = m,

u + bm−kγk(u) if k > m.
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The claim then follows from the description of T given in Theorem 2.4 and Lemma 2.9(1)
by some direct computations. For instance, if u, v ∈ λmB, we get

TK(h(u), h(v)) = TK

(

(1+α)u+(1−α)γm(u)
2 , (1+α)v+(1−α)γm(v)

2

)

= (−1)m TrdλmB

(

(1+α)γm(u)+(1−α)u
2 × (1+α)v+(1−α)γm(v)

2

)

= (−1)m TrdλmB

(

((1+α)2+(1−α)2)γm(u)v+2(1+α)(1−α)uv
4

)

= (−1)m TrdλmB

(

(1+a)γm(u)+(1−a)u
2 v

)

This lemma yields a first description of the similarity class of qA:

Proposition 5.2. If n is even, the similarity class of qA contains the quadratic form:
(

⊕0≤k<m〈2(−1)kbm−k〉〈1,−a〉tk
)

⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t−m).

Proof. Since the anti-isomorphism γk defines an isometry tk ' tn−k, the restriction of TK

to h(λkB ⊕ λn−kB), for all k < m, is

〈2(−1)kbm−k〉〈1,−a〉tk.

Moreover, we have

(1 + a)γm(u) + (1− a)u

2
=

{

u if u ∈ Sym(λmB, γm),

−au if u ∈ Skew(λmB, γm).

Hence, the proposition clearly follows from the lemma.

5.3. Proof of Theorem 1.3.

Theorem 1.3 is a consequence of the preceding results in the special case where Q = (a, b)F

is split. In that case, we may take b = 1 so that the matrix g0 = ( 0 1
1 0 ) then decomposes

as g0 = f0f̄
−1
0 , where f0 =

(

1 −α
1 α

)

. Hence, if we let f = λnf0, we have g = f f̄−1. On the

other hand, we also have g = hh̄−1, for h as in the preceding section, hence f−1h = f−1h,
which means that f−1h ∈ λn

(

M2(B)
)

. Considering the isomorphism Φ of Theorem 2.4 as an

identification as we did in the preceding section, we get that f−1h ∈ EndF (λ0B⊕· · ·⊕λnB),
hence

h(λ0B ⊕ · · · ⊕ λnB) = f(λ0B ⊕ · · · ⊕ λnB).

To prove Theorem 1.3, we compute the restriction of TK to this F -subspace in two
different ways. First, we use [4, (14.4)], which says that f is a similarity for TK with
similarity factor NrdM2(BK)(f0) = (−2α)n = 2nam. Hence, for any u, v ∈ λ0B ⊕ · · · ⊕ λnB,
we have

TK(f(u), f(v)) = 2namT (u, v).

By Remark 2.8 and Theorem 2.4, the form T is Witt-equivalent to its restriction to λmB,
which is isometric to 〈(−1)m〉(t+m ⊕ 〈−1〉t−m).

Second, the restriction of TK to h(λ0B ⊕ · · · ⊕ λnB) has been computed in Lemma 5.1
and the proof of Proposition 5.2. Comparing the results, we get that the quadratic forms

(

⊕0≤k<m〈2(−1)k〉〈1,−a〉tk
)

⊕ 〈(−1)m〉(t+m ⊕ 〈−a〉t−m)

and

〈2nam〉〈(−1)m〉(t+m ⊕ 〈−1〉t−m)

are Witt-equivalent. If m is even, we get that the following equality holds in the Witt ring:
(

∑

0≤k<m
〈2(−1)k〉〈1,−a〉tk

)

+ t+m + 〈−a〉t−m = t+m − t−m,
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from which we deduce

〈1,−a〉
((

∑

0≤k<m
〈2(−1)k〉tk

)

+ t−m

)

= 0.

To finish the proof, we may assume a is an indeterminate over the base field F . The previous
equality then implies that the quadratic form

(

⊕

0≤k<m
〈2(−1)k〉tk

)

⊕ t−m

is hyperbolic, which proves the theorem in this case. A similar argument finishes the proof
for the m odd case.

Remark 5.4. Let t(λmB,γm) : λmB → F be the quadratic form

t(λmB,γm)(x) = TrdλmB(γm(x)x).

Using Theorem 1.3, together with the facts that tn−k = tk, t(λmB,γm) = t+m − t−m, and that
2q ' 2〈2〉q for an arbitrary quadratic form q since 2〈2〉 = 2〈1〉, we obtain the following
memorable formula:

n
∑

k=0

(−1)ktk = t(λmB,γm) in WF.

5.5. Proof of Theorem 1.4. Consider first the case where m is even. In that case,
Theorem 1.3 yields

∑

0≤k<m
k even

〈2〉tk + t−m =
∑

0≤k<m
k odd

〈2〉tk.

Substituting in the formula given in Proposition 5.2, we get that the similarity class of qA

contains a quadratic form whose Witt class is
∑

0≤k<m
k even

〈2,−2a〉tk +
∑

0≤k<m
k even

〈−2b, 2ab〉tk + 〈−a,−b, ab〉t−m + t+m

=
∑

0≤k<m
k even

〈2〉nQtk + t+m − t−m + nQt−m.

Now, suppose m is odd. Multiplying by 〈a〉 the quadratic form given in Proposition 5.2 does
not change its similarity class, and shows that the similarity class of qA contains a quadratic
form whose Witt class is

〈1,−a〉 ·
(

t+m +
∑

0≤k<m
〈2(−b)k+1〉tk

)

+ t−m − t+m.

Substituting for t+m the formula of Theorem 1.3 simplifies the expression in brackets to

〈1,−b〉 ·
(

∑

0≤k<m
k even

〈2〉tk

)

and completes the proof.

5.6. Proof of Corollary 1.5. Let us assume that B is of exponent at most 2. Then,
for any even k, the algebra λkB is split. Hence, its trace form tk is Witt-equivalent to

(

n
k

)

.
Since m is even, λmB is also split, and its canonical involution γm is adjoint to a quadratic
form qB . This form is only defined up to a scalar factor, but its square is defined up to
isometry. Now [4, 11.4] gives relationships between qB and the forms t+m and t−m:

t+m − t−m ' q2
B and −t−m ' 〈1/2〉 ∧2 qB .

Hence, by Theorem 1.4, the similarity class of qA contains a form whose Witt class is

q2
B + nQ

(

〈−2〉(∧2qB) +
∑

0≤k<m
k even

(

n
k

)

〈2〉
)

.

One may easily check that, since 〈2, 2〉 ' 〈1, 1〉 and qB is even-dimensional, q2
B ' 〈2〉q2

B.
Since we are concerned only with the similarity class of qA, we may therefore forget the
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factors 〈2〉 throughout. Moreover, since m is even,
∑

0≤k<m
k even

(

n
k

)

= 2n−2 − 1
2

(

n
m

)

, and Corol-

lary 1.5 follows.

6. Another approach to the n even case

Let us decompose B = B0 ⊗ B1, where deg B0 = 2m0 is a power of 2 and deg B1 = m1

is odd. We have m = m0m1, and m is even if and only if m0 > 1. We write T0 for the
trace form of B0. Under the assumption that B⊗2

0 is split (which is automatic if m is odd),
we will give a different characterization of qA for A = Q⊗B than the one in Theorem 1.4.
Corollaries 1.6 and 1.7 will follow from this.

Proposition 6.1. Suppose that B⊗2
0 is split. Then the similarity class of qA contains a

form whose Witt class is

2n−1 +
2n−3

m0
T0(nQ − 2) if m is even

and

2n−2(nQ − nB0) if m is odd.

(Note that B0 is a quaternion algebra if m is odd.)

This result is already known for m odd: If A is a biquaternion algebra it is [2, 6.2], and in
general it follows from [2, 6.4] by a straightforward computation, using the fact that for any
integer k ≥ 1, one has nk

Q = 22(k−1)nQ. However, the results from [2] make use of Clifford
algebras, which seems a long way to go. So we include a direct proof, at least for m ≥ 3.

We start with a lemma.

Lemma 6.2. Suppose that B⊗2
0 is split. Then the quadratic form tk is Witt-equivalent to

(

n
k

)

if k is even and 1
2m0

(

n
k

)

T0 if k is odd. Moreover, we have:

t−m =
2n−3

m0
〈2〉T0 −

(

2n−2 − 1
2

(

n
m

)

)

〈2〉 if m is even,

and

t+m = 2n−2〈2〉 −
(

2n−3 − 1
4

(

n
m

)

)

〈2〉T0 if m is odd.

This lemma actually specifies t+m and t−m whatever the parity of m since in both cases
tm = t+m + t−m, and tm is known.

Proof. Since B1 is split by an odd-degree field extension, Springer’s Theorem shows that tk

is isometric to the trace form of λk
(

B0 ⊗Mm1(F )
)

. If k is even, this algebra is split, and
the result is clear. If k is odd, the algebra is Brauer-equivalent to B0, hence isomorphic to
Mp(F ) ⊗ B0, where p = 1

2m0

(

n
k

)

. The form of tk for k odd then follows from the fact that
the trace form of a tensor product of central simple algebras is isometric to the product of
the trace forms of each factor.

We have m = m0m1, and m is odd if and only if m0 = 1. Recall that

∑

0≤k<m
k even

(

n
k

)

=

{

2n−2 if m is odd,

2n−2 − 1
2

(

n
m

)

if m is even,

and

∑

0≤k<m
k odd

(

n
k

)

=

{

2n−2 − 1
2

(

n
m

)

if m is odd,

2n−2 if m is even.

The second part of the lemma then follows from Theorem 1.3 by a direct computation.
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Let us now prove Proposition 6.1. Assume first that m is even. The preceding lemma
yields

t−m +
∑

0≤k<m
k even

〈2〉tk =
2n−3

m0
〈2〉T0

and

t+m − t−m =
(

n
m

)

− 2t−m = 2n−1〈2〉 −
2n−2

m0
〈2〉T0 +

(

n
m

)

〈1,−2〉.

Since
(

n
m

)

is even, the last term on the right side vanishes, hence the quadratic form given
by Theorem 1.4 is

〈2〉
(

2n−1 −
2n−2

m0
T0 +

2n−3

m0
nQT0

)

.

This finishes the m even case.
Assume now that m is odd. Then, B0 is a quaternion algebra, and T0 = 〈2〉(2 − nB0).

The preceding lemma yields
∑

0≤k<m
k even

〈2〉tk = 2n−2〈2〉 = 2n−2

and

t−m − t+m = 1
2

(

n
m

)

T0 − 2t+m = 1
2

(

n
m

)

T0 − 2n−1〈2〉+
(

2n−2 − 1
2

(

n
m

)

)

〈2〉T0.

Since m is odd, 1
2

(

n
m

)

is even, hence 1
2

(

n
m

)

〈2〉 = 1
2

(

n
m

)

and the right side simplifies to yield

t−m − t+m = −2n−2nB0 .

Therefore, the quadratic form given by Theorem 1.4 is 2n−2(nQ − nB0), and the proof of
Proposition 6.1 is complete.

6.3. Proof of Corollary 1.6. Corollary 1.6 can be proved by induction, using the formula
given in Corollary 1.5, but it can also be directly deduced from Proposition 6.1. Indeed,
let us assume A = Ar = Q1 ⊗ . . . ⊗ Qr is a product of r ≥ 3 quaternion algebras. We let
B = Q2 ⊗ . . . ⊗ Qr. Its degree n = 2r−1 is a power of 2, and since r ≥ 3, m = 2r−2 is
even. In the notation from earlier in this previous section, we have B0 = B and B⊗2

0 is split.
Hence, we may apply Proposition 6.1. The form T0 is the trace form of B, that is the tensor
product of the trace forms of the quaternion algebras Qi for i = 2, . . . , r. Hence, we have
T0 = 〈2r−1〉(2 − nQ2) · · · (2− nQr

), and Proposition 6.1 tells us that the similarity class of
qA contains a form whose Witt class is

2n−1 + 2n−3

2r−2 〈2
r−1〉(nQ1 − 2)(2− nQ2) · · · (2− nQr

)
= 2n−1〈2r−1〉 − 2n−r−1〈2r−1〉(2− nQ1)(2− nQ2) · · · (2− nQr

)
= 〈2r−1〉2n−r−1

(

2r − (2− nQ1) · · · (2− nQr
)
)

,

which proves the corollary.

6.4. Proof of Corollary 1.7. Let us now consider a central simple algebra A as in the
statement of Corollary 1.7. Then A is isomorphic to Mk(Ar), where Ar = Q1⊗· · ·⊗Qr is a
product of r quaternion algebras. If A is split then qA is hyperbolic and the result is clear,
so we may assume that r 6= 0. Because deg A ≡ 0 mod 4 by hypothesis, we may further
assume that r 6= 1 (so that r ≥ 2), with perhaps some of the Qi being split.

We first treat the k = 1 case. If r = 2, then A is biquaternion algebra and qA is an Albert
form, which lies in I2F . If r ≥ 3, then by Corollary 1.6 we have to prove that

2n−1 − 2n−r−1(2− nQ1) · · · (2− nQr
)

lies in InF . When we expand this product, the terms of the form 2n−1 cancel, and we are
left with a sum of terms of the form ±2n−`−1nQi1

· · ·nQi`
, where ` ≥ 1. Since for any i the
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form nQi
lies in I2F , 2n−`−1nQi1

· · ·nQi`
belongs to In−`−1+2`F = In+`−1F , and hence to

InF .
Now suppose that k ≥ 2. Since r ≥ 2, we have deg(Ar) ≡ 0 mod 4 and we can apply [2,

6.3(1)]. Hence, the similarity class of qA contains a form which is Witt-equivalent to q⊗k
Ar

.
Since the result holds for Ar by the k = 1 case, we are done.
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Université Paris 13
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